• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Comparison of manual and automatic barcode detection in rough horticultural production systems

Comparison of manual and automatic barcode detection in rough horticultural production systems

  • 摘要: Automation of production in the nurseries of flower producing companies using barcode scanners have been attempted but with little success. Stationary laser barcode scanners which have been used for automation have failed due to the close proximity between the barcode and the scanner, and factors such as speed, angle of inclination of the barcode, damage to the barcode and dirt on the barcode. Furthermore, laser barcode scanners are still being used manually in the nurseries making work laborious and time consuming, thereby leading to reduced productivity. Therefore, an automated image-based barcode detection system to help solve the aforementioned problems was proposed. Experiments were conducted under different situations with clean and artificially soiled Code 128 barcodes in both the laboratory and under real production conditions in a flower producing company. The images were analyzed with a specific algorithm developed with the software tool Halcon. Overall the results from the company showed that the image-based system has a future prospect for automation in the nursery.

     

    Abstract: Automation of production in the nurseries of flower producing companies using barcode scanners have been attempted but with little success. Stationary laser barcode scanners which have been used for automation have failed due to the close proximity between the barcode and the scanner, and factors such as speed, angle of inclination of the barcode, damage to the barcode and dirt on the barcode. Furthermore, laser barcode scanners are still being used manually in the nurseries making work laborious and time consuming, thereby leading to reduced productivity. Therefore, an automated image-based barcode detection system to help solve the aforementioned problems was proposed. Experiments were conducted under different situations with clean and artificially soiled Code 128 barcodes in both the laboratory and under real production conditions in a flower producing company. The images were analyzed with a specific algorithm developed with the software tool Halcon. Overall the results from the company showed that the image-based system has a future prospect for automation in the nursery.

     

/

返回文章
返回